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Photoacoustic (PA) imaging has emerged as a powerful 
tool for various biomedical studies, such as molecular 
imaging of biomarkers, functional imaging of physi-
ological parameters, and gene expression products[1–3]. 
PA tomography (PAT) is based on the PA effect which 
refers to the generation of acoustic waves by the ab-
sorption of electromagnetic energy, such as optical, 
radio-frequency, or microwave energy[4–8]. In biomedical 
applications, laser pulses are delivered into biological 
tissue. Some of delivered energy will be absorbed and 
converted into heat, leading to transient thermoelastic 
expansion and thus wideband acoustic wave emission. 
The generated acoustic waves are then detected by 
 ultrasound transducer to reconstruct images. PAT has 
ultrasonic  resolution with high tissue contrast due to 

optical absorption. In addition, compared with other 
optical imaging, PAT has deeper penetration depth, 
and provides high resolution at relatively large imaging 
depth.

For the conventional scanning PAT system, more 
number of measurements are required to obtain high-
resolution images, which imply long data acquisition 
time and high-cost system. Significant efforts have been 
made to address this problem, one key approach is to 
explore the sparsity of PA images and reconstruct the 
images from limited view acquisitions[9–13]. Recently, a 
new data acquisition method, compressive sampling 
PAT (CSPAT), is proposed to make low  sampling rate 
and high-resolution PAT possible by leveraging optic 
masks[10,14–16]. As shown in Fig. 1, several mirrors deflect 
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Fig. 1. (a) Schematic representation of CSPAT framework: in practice, the excitation laser can be a diode-pumped Nd:YLF Q-
switched pulsed laser (523 nm wavelength, 6 ns pulse width; IS8II-E, INNOSLAB Edgewave, Germany), the maximum pulse rep-
etition rate of the Nd: YLF laser is up to 5 kHz and (b) the principle diagram of DMD (parameters in practice can be: HS200G, 
800 × 600 pixel, 0.55 inches for panel size, 0.442.41 inches for projection distance).
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the laser beam, adjusting both the direction and eleva-
tion. A beam expander then shrinks the laser beam by 
a 4f optical system, in order to fit the digital mirror 
device (DMD). The 4f optical system consists of two 
plano-convex lenses, respectively. A neutral density fil-
ter is placed in the middle to smoothen the laser beam 
profile. The laser beam is then directed onto the DMD 
for 2D laser scanning of biological tissue. The mask pat-
terns (0-1 matrices) of DMD can be fixed by LabVIEW 
software on PC. Again, the unfocused transducer re-
ceives PA waves at near field, and the signals then go 
through pre-amp and are recorded by gage data acqui-
sition card. Finally, reconstructed PA images can be 
obtained to study the biological tissue.

An important issue within the CSPAT framework is 
how to design the optic masks. The widely used  optic 
masks in the original CSPAT framework are random 
masks, which are corresponding to the conventional 
compressive sampling schemes[17]. However, the struc-
tures of the significant coefficients in the sparse sig-
nals are ignored by data acquisition under the random 
sampling cases. A representative sparsity structure for 
a sparse signal can be expressed as sparse sum of sub-
space (also known as block sparse)[18], which implies 
the nonzero values always appear in some specific low-
dimensional subspaces. In addition, natural signals 
always have sparse representations in some frequency 
domain, and the significant coefficients mostly appear 
at lower frequency. In practical application, sparsity 
structures are always obtained via dictionary learning 
or some prior knowledge[18]. Intuitively, the more signifi-
cant elements of the sparse signals should be captured 
by more measurements for exact reconstruction. It has 
been proved that this novel scheme has superior perfor-
mance than ordinary random sampling schemes[19]. Here 
we propose to use this novel theory for CSPAT mask 
design by leveraging edge expander codes[20]. Specifical-
ly, we want to reduce the number of measurements by 
giving more observation to the significant parts of the 
signal. We first present the definition of edge expander 
codes or graphs.

As shown in Fig. 2, an (a and d ) unbalanced bi-
partite edge expander graph is a bipartite graph (G, 
A, and B) with n left variable nodes, m right check 
nodes, and minimal and maximal left degrees dmin and 
dmax, respectively, such that for any subset X ⊂ A with 
X nα≤  has at least ( ) ( )N X Xδ= Γ  neighbors, where 

Γ(X) is the set of edges that connect X and N(X ), and 
d is the expansion factor[21]. Especially, if the left nodes 
hold the same degree, the above definition has the same 
formulation with Ref. [21], which is considered as an 
uniform sampling scheme. Normally, the relationship 
between the variable nodes and check nodes are rep-
resented by the adjacency matrix R ,m n×Φ ∈  that is, if 
the check node i connects to variable node j, Φij = 1, 
otherwise, Φij = 0. Actually, a randomly chosen bipar-
tite graph will probably be a good edge expander[22].

The unbalanced expander graphs can well simulate 
the processing of sparse sampling, the left vertices cor-
respond to the elements of the original signal, and the 
right vertices are equivalent to the compressive measure-
ments. Moreover, the adjacency matrices of the expand-
er graphs are considered as the measurement matrices 
instead of the conventional dense random matrices. Ja-
farpour et al.[21] proposed that the adjacency matrices of 
the (a and d) expanders with same left degrees are effi-
cient measurement matrices due to the satisfaction of l1-
norm restricted isometry property. As mentioned above, 
we want the significant parts of the sparse signals to be 
taken more measurement times, that is, the correspond-
ing left vertices will have more neighbors in the right 
part of the edge expanders. Assuming we roughly know 
the positional information of the significant elements of 
a given sparse signal, the following conclusion holds for 
edge expander graphs framework.

Let Φ ∈ Rm×n be the adjacency matrix of an (a and d ) 
edge expander, S is a subset of left vertices set, each 
vertex in S has dmax right neighbors, and the rest have 
dmin each. Given an an sparse signal x ∈ Rn (which has 
only an nonzero elements), if the left vertices corre-
sponding to the nonzero elements of the signal are all 
included in S, then

 ( ) ( )1 max 11
2 1 / .x d x xδ − ≤ Φ ≤  (1)

The proof of the above conclusion is nearly the same 
as that of Theorem 1 in Ref. [21]. The above conclu-
sion not only implies the adjacency matrices of edge 
expanders can be used as measurement matrices for 
sparse sampling framework but also reveals the expan-
sion factor d is the most important parameter for such 
expanders. To verify the performance of different edge 
expanders with different left degrees, we need to calcu-
late the expansion factors first. Consider a given sub-
set of left vertices ,'X A⊂  the corresponding neighbors 
set is ( ){ }( )= and .∈ ∈ ∈Γ′ ' '

j i ijN X r B v X e X  In terms 
of the adjacency matrix Φ, ΦX� is the submatrix of  

Fig. 2. Illustration of an (a and d) edge expander code, A 
and B correspond to the set of signal elements and the set 
of measurements, respectively. The measuring process can be 
modeled as the adjacency matrix.
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Based on the support set, there are more value 1 in the 
corresponding index set of the mask, which means more 
optic energy is absorbed by the corresponding tissue. In 
addition, we use 

1 2

1 1
X XΦ Φ  to measure the expansion 

of different expanders with different degrees, where  X1 
⊂ S and X2 ⊂ A\S and  are with the same size. Figure 

3(c) shows plots of the mean values of 
1 2

1 1
X XΦ Φ  for 

different sizes of 1X  (or 
2X )  and different degrees 

taken over 500 realizations. As can be seen, for the 
uniform sampling case (dmax = dmin), the measurements 
for zero elements and nonzero elements are nearly the 
same. For non-uniform sampling case (dmax > dmin), the 
measurements for nonzero elements are dramatically 
more than that of zero elements, and when increasing 
dmax, the gap will also increase. Moreover, essentially 
beyond a certain bound, there is no gain in increasing 
dmax because dmax will be very close to m.

In CSPAT, we measure integrals over patterns or 
collections of points. The measurements Vk at the kth 
arc position after m expander masks can be expressed 
as a linear equation �V U N ,k k k= Φ +  where matrix 
� Rm n×Φ ∈  denotes the linear forward operator related 

Φ composed of columns of Φ indexed by the set X′, so 
the number of neighbors of X′ is the number of rows 
in ΦX′ with at least one nonzero, denoted by 1 ,X ′Φ  
and the number of edges that X′ connects is the num-
ber of value 1 in ΦX′, denoted by .X ′Φ  Then we can 
define the expansion of an edge expander as the ratio 

( ) ( ) ,N X XΓ′ ′  or 1 .X X′ ′Φ Φ  Notice that 1
′Φ X  and 

′Φ X  are random variables depending on X′, thus we 
can acquire a statistical result of expansion by random-
ly selecting X′ many times.

As an example, a 256 × 256 tissue phantom image 
is designed and shown in Fig. 3(a), if we regard every 
column of the image as a signal, the crucial coefficients 
are always in the middle position. If the important co-
efficients are scattered, the support set can be estimat-
ed as the union of some focused index sets. We let the 
support set of every column be S = [50, 160] in this 
case, corresponding to an expander graph with 256 left 
vertices, the vertices in the support set will have more 
neighbors. Figure 3(b) shows a schematic of 100 0-1 
masks designed by such edge expander with dmax = 30, 
dmin = 8, and m = 100. Each optic mask is obtained by 
extending each row of the matrix to a 256 × 256 matrix. 

dmin dmax

dmin dmax

dmin dmax

d

d

Fig. 3. (a) 2D tissue phantom image, (b) 100 masks designed from the adjacent matrix of an edge expander, each row of the 0-1 
matrix can extend to be a 256 × 256 matrix as a mask, and (c) comparison of the mean values of 

1 2

1 1Φ ΦX X  for different sizes of 
1X  (or 2X ), and different degrees taken over 500 realizations. The curves imply the nonzero element sets with the same sizes 

are observed more times in non-uniform sampling case.
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switch array and modulated according to the 0–1 adja-
cent matrices of expander codes (or other random 0–1 
matrices) by the computer in real application. To bet-
ter evaluate the performance, the relative l2 reconstruc-
tion error defined as 0 02 2

U U UrE = −  was used to 
compare different reconstructions, where �U  is the re-
constructed image and U0 denotes the reference image. 
Figures 4(a)–(d) show a set of representative simulation 
results obtained by different methods with 60 masks 
and signal-to-noise ratios (SNRs) of 10 dB. The meth-
od non-uniform (8, 30) is corresponding to the edge 
expander mask mentioned earlier with dmin = 8, dmax = 
30, and for uniform case, dmin = dmax. As can be seen, 
non-uniform sampling reconstruction demonstrates bet-
ter visual quality than uniform sampling and random 
sampling reconstructions. Furthermore, the l2 recon-
struction errors for random, uniform (8, 8), uniform  
(30, 30), and non-uniform (8, 30) are 0.7198, 0.7211, 
0.7080, and 0.6532, respectively, which can further 
demonstrate the improvement of the proposed method.

A more comprehensive comparison of the relative l2 
reconstruction errors for different mask patterns with 
different number of measurements (noisy observation 
with SNR = 10 dB) is shown in Fig. 4(e). Since all four 
kinds of masks were randomly chosen, the experimental 
results for each number of measurement were averaged 
50 times. The curves further show that the proposed 
method uses fewer measurements to achieve the same 
error than other methods tested. To further validate the 
proposed method, we compared it with two other meth-
ods in Ref. [14], that is, Bayesian compressive sensing 
(BCS) algorithm and basis pursuit (BP) with random 
masks. Table 1 shows the reconstruction performances 
of the three methods with SNR = 10 dB in terms of 
reconstruction error and running time. As can be seen, 
with the same number of masks, the proposed method 

to the optic mask Φ[10,15], Uk is the corresponding PA 
signal to be reconstructed and Nk is the measurement 
noise often modeled as white Gaussian noise. We can 
also model the problem as �V= U+N,Φ  where U Rn n×∈  
is considered as the desired image, the kth column of V 
and N are Vk and Nk, respectively. To solve this ill-con-
ditioned model fitting problem (because of insufficient 
measurements), some non-quadratic regularization (or 
widely known as sparsity constraints) should be used 
to incorporate prior information into the reconstruction 
process. In this work, we consider the widely used to-
tal variation (TV) as the regularization term. TV has 
been demonstrated effective in improving reconstruc-
tion quality because of the advantages in terms of edge 
preservation and noise removal[23]. Based on TV regular-
ization, we propose to estimate U using

 

2

12
ˆˆ V ,arg min

U

U UU λ− Φ + ∇=  (2)

where l > 0 is a regularization parameter, 
1U∇  is the TV regularization term defined as 

( ) ( ) ( )
2 2

1 2 1
1 ,ijij ij ij ij

U U U U∇ = ∑ ∇ = ∑ ∇ + ∇ ∇  and 

2∇  denote horizontal and vertical difference operators[23], 
respectively. Several algorithms can solve the optimization 
problem expressed as Eq. (2), we propose to use an ef-
ficient primal-dual-based algorithm described in Ref. [23].

The aforementioned tissue phantom has been used 
to evaluate the performance of the proposed frame-
work (please refer Refs. [14,15] for further details on 
the phantom). We used k-wave toolbox to model PA 
propagation in tissue, and all reconstructions were im-
plemented in MATLAB. The simulative mask changes 
its optical absorption distribution pattern based on 
the well- designed edge expander codes for each laser 
light pulse. And it can be realized as the time-varying 

Fig. 4. Simulation results from (a) 60 random masks, (b) uniform (8, 8) expander masks, (c) uniform (30, 30) expander masks, 
and (d) non-uniform (8, 30) expander masks, respectively and (e) relative l2 errors for different methods at different number of 
measurements.
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has better reconstruction quality and significantly fewer 
computing times than the other two methods.

In conclusion, we present an edge expander codes-
based method to design the optic masks for CSPAT, 
and propose a TV regularization-based model to for-
mulate the associated problem. The proposed method 
aims to reduce the number of measurements and recon-
struct the images from limited view acquisition by giv-
ing more observation to the significant parts. A similar 
idea using limited view PA data for reconstruction is 
applied to reconstruct the images of the subcutaneous 
vasculature of human hand, the subcutaneous vascula-
ture of the back of a rat. Both theoretical analysis and 
results from carefully designed computer simulations 
demonstrate the effectiveness of the proposed method, 
so we expect the proposed method to put into practice 
and to provide an approach for optimal mask design 
and be an integral part of CSPAT. For further study, 
we will consider the case that the support set spans a 
very large area, that is, the image is not sparse at all.
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